Cours 3 —18/09/2024

1. Introduction

1.3. Cinématique
1.3.c. Coordonnées cylindriques

1.3.d. Coordonnées sphériques
1.3.e. Repeére de Frenet — mouvement curviligne “A
1.3.f. Mouvement circulaire uniforme

1.3.9. Mouvement circulaire — Cas géneéral



https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/1/

1.3.c. Coordonnees cylindiques

Application : un mouvement hélicoidal est parfaitement décrit dans
un systéme de coordonnées cylindriques

Exemple de mouvement hélicoidal : la vis d’Archimede

http://en.wikipedia.org/wiki/Archimedes' screw arnold systems

anlagen-technik

LEE
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1.3.c. Coordonnees cylindiques

Le repére cylindrique est défini par les vecteurs
unitaires ¢, e, €. (C'est un repére orthonormé) Composantes des vecteurs e, ¢, €.
dans le repere (O; e, e, €)

€, vecteur unité dans la direction p
(déplacement de P si ¢ et z sont
constants) ;

Cos
5= 1«
e,= | sing
0
€, vecteur unité dans la direction ¢ :
- .
>y e, est tangent au cercle horizontal
passant par P et de rayon p;
—sin
- i o
o= | cosg
0

Coordonnées cylindriques — GeoGebra

X €. vecteur unité dans la direction =
(p et ¢ constants) ;
0
. - — — E‘j =10
Equation du mouvement : 7(2) = p(1) e+ z(1) e, !

Coordonnées cartésiennes des vecteurs unitaires e_/;, @), e


https://www.geogebra.org/m/yzz9psgb
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1.3.c. Coordonnees cylindiques

B \/ecteurs vitesse et accélération

Equation générale du mouvement : 1(2) = p(1) e+ z(1) e;

f o
2 — — dr(t) : : ATTENTION: € et & °p = PCo
I'(l’ - p(t) ep+ Z(U €, — v(t) =— = lpep + pep] + [Z'ez + Zezl dépendent du t?ampép avec ¢ e—> = —ge.
dat les relations suivantes : Qo QD pP
| %27
U, =P
Vitesse exprimée dans le repere (O, e, e, e.) V=1ye, + Ve, + Ve, {Vp = PP
v, =72
—_ 2 . 2
Ap =P — PP
Accélération exprimée dans le repere (O, e e e ) | @ = ape, + age, + aze; ya, = 2p9 + p@
a, =7
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1.3.d. Coordonnéees sphériques

Les coordonnéees spheriqgues sont particulierement adaptées pour des

mouvements de type orbital. Exemple : satellite en orbite autour de la Terre

e Les coordonnées cartésiennes sont inutilisables car il n’est
pas possible de mesurer x, y, et z sur de telles distances.

e En revanche, on peut mesurer facilement la distance par
télémeétrie laser.

On mesure d’abord le temps At que met la lumiere pour faire un A/R

Détecteur
de photons

—) laser

—

T T T T
T T TT

T T T T
T T TT

T T T T
T T TT

T T T T

[

< d g PRI
|—>At=> d=cAt

c : vitesse de la lumiére ~ 3x108 m/s

1)
2)

-

/ Télémeétrie laser sur satellites :

On mesure la distance par télémétrie laser

On repére la direction du laser (vecteur €;) avec 2 angles 6 et ¢
Z L . N > > e
définis dans un repere (O; e_, e, e.)

L’angle € est défini entre e, et ¢, avec 6= 0 quand e, et ¢, colinéaires
L’angle ¢ est défini entre e, et la projection de ¢, dans le plan (Oxy); ¢ =0 quand la projection est sur Ex’/
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1.3.d. Coordonnées sphériques

Information scientifique : tir « laser — Lune » pour mesurer la distance entre la Terre et la Lune

L'expérience de ['Observatoire de La Cote d'Azur e
PERIGEE
J ® Qo
| APOGEE EARTH 7
s D
- La distance moyenne entre la Terre

et la Lune est de 384’400 km

Variation de la distance Terre-Lune selon la Nasa (2001-2007)
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390000

380000

370000

Distance Terre-Lune (en km)

360000

July 20, 1969, Apollo-11 .

350000 : L 4 . .
0 1 2 3 4 5 6 7
Temps (annee) +2.001e3

Réflecteur “coin de cube” surla Lune
https://lejournal.cnrs.fr/videos/un-laser-de-la-terre-a-la-lune

Station de tir laser

http://culturesciencesphysique.ens-lyon.fr/ressource/laser-distance-terre-lune.xml



http://culturesciencesphysique.ens-lyon.fr/ressource/laser-distance-terre-lune.xml
http://www.oca.eu/
https://lejournal.cnrs.fr/videos/un-laser-de-la-terre-a-la-lune
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1.3.d. Coordonnéees sphériques

B Coordonnées spheriques : exemple d’un satellite

ram— 89
Y

—

— — . .
-e,, €y, €, sont des vecteurs unitaires.

- lIs forment une base orthonormée directe.

- lls dépendent du temps (position du point P)

-

~N
- La position du satellite est définie dans le repére (O; e, ¢, , e,).
- La position du point P est donnée par le vecteur position 7 = OP.

- Les coordonnées sont r, @ et ¢, (elles dépendent du temps).
\-

J
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1.3.d. Coordonnées sphériques

B Définition des angles et ¢, et des vecteurs unitaires e, eye,

situation pour 6 = nr/4 et ¢ = /4 situation pour 0 = /4 et ¢ = /4

Z A E)
ﬁ
Z e.~0 Y Z
N Z\%‘
\
e \
ex 4 \\

ny

o
(p N\ S
\\P “__,--—ﬁuﬁ___‘q
_ - 1 °
—_ /" I
N .
ee er .\\

xYV

—_— — —)f
e, ey, €,forment une
base orthonormée directe

Attention : e, et e, ne sont pas ) o
——— "0 r P Coordonnées sphérigues — GeoGebra
dans le plan (xOy)
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1.3.d. Coordonnées sphériques

Composantes des vecteurs e, €, €,
\ —_ - —
dans le repere (O; e, , ¢, €,)

e, vecteur unité dans la direction r

(déplacement de P si et ¢ sont

constants) ;
sin f cos @
- . .
e, = | sinfsin
cos f

€, vecteur unité dans la direction ¢
(e, est tangent au cercle horizon-
tal de rayon rsinf). Dépl. de P si
r et g sont const ;

. — sin
e, = | cosp
0
&y vecteur unité dans la direction 6
& (eg est tangent au cercle vertical
, de rayon r). Dépl. de P s1 ¢ et r
Les coordonnées de Psontr, 6, ¢ sont const :
cos f cos o
. - L —> cp = | cos@sing
Equation du mouvement : T(t) = r(l‘) e, _sin®
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1.3.d. Coordonnées sphériques

B Position, vitesse et acceélération en coordonnées spheriqu )
dans le repére (O; €; gy ¢,) en fonction de r, 6, et ¢, la position est I_”)(l? — I”(l? g; \\\\\ o
la vitesse est V = ?(t) =1 e +1r(t) e_.; z 9(”?@ Fay

e_r’=9e_9’+(psin0e_(p’

@(0) ,
On peut démontrer les relation suivantes : e; = —fe, + ¢ cosfe, X/ ___> S
ép’= —@sinfe, — ¢ cosBeg

et exprimer ¥ et a en fonction des vecteurs de base du systéme de coordonnées sphériques :

‘ :
V. =T
- —> —_—> — . ‘ .
Vitesse | V = Ur€r T Up€, + Vg€g § Vp =TY sin
| v =10

ar =7 —rf —rp?sin®f

Alérati "= — —> - .7 C ..
Accélération | a = q/e, + age, + ageg { a, = ripsinf + 2rpf cosf + 27 sin

@
©
(@)
O
=
S
=]
wn
(%)
Q
2
C
(@)
o
e
©
(%)
C
o
+—
©
| -
frs}
(%)
c
(@)
=
)
()

_ ag =16 + 270 — rp? cos B sin 0

10
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1.3.e. Repere de Frenet

B Accélérations tangentielle et normale pour un mouvement curviligne

<.

sinA@= Av, /v .
quand ¢ — 0 alors sinAO@~AOQ~Av, /v = Av, ~vAO

Av,=v’—v cosAO .
quand ¢t — 0 alors Av,~v'—v = Av, ~dv

trajectoire ® sic—> 0 alors sine~¢ etcose~1

Av = Av, +Av,

li A li A6
On définit I'accélération normale instantanée : a,, m AV, _1m

= = %
At >0 At At—>0 At

lim Avy dv

On définit 'accélération tangentielle instantanée : | a

T A0 Arde

11


https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/11/

1.3.e. Repere de Frenet

B Accélérations tangentielle et normale pour un mouvement curviligne

<.

trajectoire

¥ rayon de courbure p

N D
D Q

lim A6
a, = %
At —>0 At A6
As =vAt=pAd ~ — ="
At p
lim A8 V°
a = V— =
At—>0 At p
Nous avonsdonc |, = v et g = av
n p t dt

Expression du vecteur accélération dans la
base de Frenet :

dv v2
d=a+a, =—u+—u
dt p "

u, et u, sont les vecteurs unitaires de la base de Frenet

12
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1.3.e. Repere de Frenet

B Accélérations tangentielle et normale pour un mouvement curviligne

2
. e, . - — N dv — v —
Expression du vecteur acceéléeration dans la base de Frenet: | g = at—l— a, = d_ U, + — u,
t P
Cas particuliers
1 — Mouvement rectiligne uniformément accéléré 2
p—>0 = —-0
. P
v
o i=a=27
U T qr
2 — Mouvement cirulaire uniforme (la vitesse est constante)
dv 0
dt
- — ’Uz —
a=a, = " u,

13
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1.3.f. Mouvement circulaire uniforme

B \itesse angulaire scalaire

Nous savons que

v =ds/dt or ds = Rd&

ﬂ) s sindO~do= ds/R

P R
do
R s dotv=R— = Rw
dt
)6
La vitesse angulaire (scalaire) w est une variation
d'angle d6 sur un intervalle de temps dt, soit :

~ de
Cdt

<!

w (enrad.s! ous)

et la vitesse de déplacement (scalaire) : |[v = Rw

La vitesse angulaire o est constante pour un mouvement circulaire uniforme

14
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1.3.f. Mouvement circulaire uniforme

B Vitesse angulaire vectorielle — expression générale

R est le rayon du cercle pour le mouvement de rotation de P autour de I'axe Oz

IZ_> La vitesse pour un mouvement circulaire uniforme estv = R @
0]
Or R =rsiny soit v =i@ r Siny i= norme du produit vectoriel de 7 et &
Ch_R
v : : — . .
» P On introduit le vecteur @), le vecteur vitesse angulaire
r s - . [,

2 w est un vecteur perpendiculaire au plan de rotation

X % et toujours dirigé vers le haut pour une rotation dans

le sens trigonométrique (contraire au sens de rotation
des aiguilles d’'une montre).

La vitesse ¥ pour un mouvement de rotation uniforme s’écrit alors :

) -
- — - %
V=W XT M
7

0= ot
Relation entre angle et vitesse angulaire : PouUr un tour complet : ¢ = T (période) et 0= 2r

dou w = 27/T = 2V fréquence [s!ou hertz (Hz)]

15
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1.3.9. Mouvement circulaire — Résume

Mouvement circulaire avec w(t) la vitesse angulaire (w n’est pas forcément constante)

- — - > N
V=@ XT avec I = Re,

Acceéléeration angulaire instantanée :

a=dwdt=d*6/dt% =6

Accélération tangentielle instantanée :

a,=dv/dt =R daw/dt = Raa =R

v = Rw avec R cte

Accélération normale instantanée :

— 1,2 — __pAN2 accélération . | |
ay =V /R = Ra” =R0 centripéte Remarque : mouvement circulaire uniforme = v = cte
v =Rw avec R cte d’'ou a, = 0 mais a, non nulle (=v?/R)

16
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