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1. Introduction

1.3. Cinématique
1.3.c. Coordonnées cylindriques

1.3.d. Coordonnées sphériques

1.3.e. Repère de Frenet – mouvement curviligne

1.3.f. Mouvement circulaire uniforme

1.3.g. Mouvement circulaire – Cas général
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Application : un mouvement hélicoïdal est parfaitement décrit dans 
un système de coordonnées cylindriques

http://en.wikipedia.org/wiki/Archimedes'_screw

Exemple de mouvement hélicoïdal : la vis d’Archimède
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1.3.c. Coordonnées cylindiques

http://en.wikipedia.org/wiki/Archimedes'_screw
https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/2/


𝑟𝑟(t) = ρ(t) eρ+ z(t) ezEquation du mouvement :

Coordonnées cartésiennes des vecteurs unitaires eρ , e𝜑𝜑 , ez
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1.3.c. Coordonnées cylindiques
Composantes des vecteurs eρ , e𝜑𝜑 , ez
dans le repère (O; ex, ey , ez) 

⃗

⃗

⃗
⃗

⃗

⃗

⃗

v⃗

Coordonnées cylindriques – GeoGebra

Le repère cylindrique est défini par les vecteurs
unitaires eρ , eϕ , ez (c’est un repère orthonormé)

https://www.geogebra.org/m/yzz9psgb
https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/3/


ATTENTION: eρ et eϕ
dépendent du temps avec 
les relations suivantes :

r⃗(t) = ρ(t) eρ+ z(t) ez

C
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1.3.c. Coordonnées cylindiques

𝑣⃗𝑣(t) = 𝑑𝑑𝑟𝑟(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜌𝜌 ̇𝑒𝑒𝜌𝜌 + 𝜌̇𝜌𝑒𝑒𝜌𝜌 + 𝑧̇𝑧𝑒𝑒𝑧𝑧 + 𝑧𝑧 ̇𝑒𝑒𝑧𝑧

̇𝑒𝑒𝜌𝜌 = 𝜑̇𝜑𝑒𝑒𝜑𝜑
̇𝑒𝑒𝜑𝜑 = −𝜑̇𝜑𝑒𝑒𝜌𝜌

̇𝑒𝑒𝑧𝑧 = 0

𝑣⃗𝑣 = 𝑣𝑣𝜌𝜌𝑒𝑒𝜌𝜌 + 𝑣𝑣𝜑𝜑𝑒𝑒𝜑𝜑 + 𝑣𝑣𝑧𝑧𝑒𝑒𝑧𝑧 �
𝑣𝑣𝜌𝜌 = 𝜌̇𝜌

𝑣𝑣𝜑𝜑 = 𝜌𝜌𝜑̇𝜑
𝑣𝑣𝑧𝑧 = 𝑧̇𝑧

𝑎⃗𝑎 = 𝑎𝑎𝜌𝜌𝑒𝑒𝜌𝜌 + 𝑎𝑎𝜑𝜑𝑒𝑒𝜑𝜑 + 𝑎𝑎𝑧𝑧𝑒𝑒𝑧𝑧 �
𝑎𝑎𝜌𝜌 = 𝜌̈𝜌 − 𝜌𝜌𝜑̇𝜑2

𝑎𝑎𝜑𝜑 = 2𝜌̇𝜌𝜑̇𝜑 + 𝜌𝜌𝜑̈𝜑
𝑎𝑎𝑧𝑧 = 𝑧̈𝑧

Equation générale du mouvement : r⃗(t) = ρ(t) eρ+ z(t) ez

Vitesse exprimée dans le repère (O; eρ,eϕ ,ez )

Accélération exprimée dans le repère (O; eρ,eϕ ,ez )

 Vecteurs vitesse et accélération

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/4/


Les coordonnées sphériques sont particulièrement adaptées pour des 
mouvements de type orbital. Exemple : satellite en orbite autour de la Terre

Télémétrie laser sur satellites :
1) On mesure la distance par télémétrie laser

2) On repère la direction du laser (vecteur er) avec 2 angles θ et ϕ
définis dans un repère (O; ex , ey , ez)

x y

z
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1.3.d. Coordonnées sphériques

𝑒𝑒𝑟𝑟

L’angle θ est défini entre ez et er avec θ = 0 quand ez et er colinéaires
L’angle ϕ est défini entre ex et la projection de er dans le plan (Oxy); ϕ = 0 quand la projection est sur ex

• Les coordonnées cartésiennes sont inutilisables car il n’est
pas possible de mesurer x, y, et z sur de telles distances.
• En revanche, on peut mesurer facilement la distance par 
télémétrie laser.

∆t ⇒ d = c ∆t 
c : vitesse de la lumière ∼ 3x108 m/s

Détecteur
de photons

On mesure d’abord le temps ∆t que met la lumière pour faire un A/R
O

O

laser

d

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/5/


Station de tir laser

July 20, 1969, Apollo 11

Réflecteur “coin de cube” sur la Lune

http://culturesciencesphysique.ens-lyon.fr/ressource/laser-distance-terre-lune.xml 6

1.3.d. Coordonnées sphériques

la distance est déterminée au centimètre près

L'expérience de l'Observatoire de La Côte d'Azur

Information scientifique : tir « laser – Lune » pour mesurer la distance entre la Terre et la Lune 

La distance moyenne entre la Terre 
et la Lune est de 384’400 km

https://lejournal.cnrs.fr/videos/un-laser-de-la-terre-a-la-lune

http://culturesciencesphysique.ens-lyon.fr/ressource/laser-distance-terre-lune.xml
http://www.oca.eu/
https://lejournal.cnrs.fr/videos/un-laser-de-la-terre-a-la-lune
https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/6/


x y

z

- La position du satellite est définie dans le repère (O; er , eθ , eϕ).
- La position du point P est donnée par le vecteur position 𝑟𝑟 = 𝑂𝑂𝑂𝑂.
- Les coordonnées sont r , θ et ϕ, (elles dépendent du temps).
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1.3.d. Coordonnées sphériques

𝑒𝑒𝑟𝑟

𝑒𝑒𝑟𝑟

O

P

 Coordonnées sphériques : exemple d’un satellite

O

𝑒𝑒𝜃𝜃

𝑒𝑒𝜃𝜃

𝑒𝑒𝑟𝑟

- er , eθ , eϕ sont des vecteurs unitaires.
- Ils forment une base orthonormée directe.

- Ils dépendent du temps (position du point P)

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/7/


 Définition des angles θ et ϕ, et des vecteurs unitaires er eθ eϕ

Coordonnées sphériques – GeoGebra

1.3.d. Coordonnées sphériques

situation pour θ = π/4 et ϕ = π/4

ez
ey

ex

eθ

P
eϕ

er

ϕ

Attention : eθ et er ne sont pas 
dans le plan (xOy)

situation pour θ = π/4 et ϕ = π/4

x

y

ex

ey

ez

er , eθ , eϕ forment une 
base orthonormée directe 

O

O

https://www.geogebra.org/m/h4nnpxek
https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/8/


𝑟𝑟(t) = r(t) erEquation du mouvement :

Les coordonnées de P sont r, θ , ϕ

θ
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1.3.d. Coordonnées sphériques
Composantes des vecteurs er , eθ , eϕ
dans le repère (O; ex , ey , ez) 

⃗

⃗

⃗

⃗

⃗

⃗

ex

ey

ez

O

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/9/


r⃗(t) = r(t) erdans le repère (O; er eθ eϕ) en fonction de r, θ, et ϕ, la position est

 Position, vitesse et accélération en coordonnées sphériques 
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1.3.d. Coordonnées sphériques

̇𝑒𝑒𝑟𝑟 = 𝜃̇𝜃𝑒𝑒𝜃𝜃 + 𝜑̇𝜑 sin 𝜃𝜃 𝑒𝑒𝜑𝜑
̇𝑒𝑒𝜃𝜃 = −𝜃̇𝜃𝑒𝑒𝑟𝑟 + 𝜑̇𝜑 cos 𝜃𝜃 𝑒𝑒𝜑𝜑
̇𝑒𝑒𝜑𝜑 = −𝜑̇𝜑 sin 𝜃𝜃 𝑒𝑒𝑟𝑟 − 𝜑̇𝜑 cos 𝜃𝜃𝑒𝑒𝜃𝜃

On peut démontrer les relation suivantes :

v = ̇⃗r(t) = 𝑟̇𝑟(t) er + 𝑟𝑟 (t) ̇erla vitesse est

Vitesse

Accélération

et exprimer 𝑣⃗𝑣 et 𝑎⃗𝑎 en fonction des vecteurs de base du système de coordonnées sphériques :

Dé
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on
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le
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ur

 M
oo

dl
e
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v⃗

P

P’

∆v
∆vn

∆vt
∆θ

∆v = ∆𝑣𝑣𝑛𝑛+∆𝑣𝑣𝑡𝑡

sin∆θ = ∆vn /v
quand  t → 0  alors sin∆θ ≈ ∆θ ≈ ∆vn /v ⇒ ∆vn ≈ v∆θ

 Accélérations tangentielle et normale pour un mouvement curviligne

On définit l’accélération normale instantanée :

1.3.e. Repère de Frenet

11

trajectoire

v’

v⃗

v’

On définit l’accélération tangentielle instantanée :

∆vt =v’ ̶̶ v cos∆θ
quand  t → 0  alors ∆vt ≈ v’ ̶̶ v ⇒ ∆vt ≈ dv

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

sin 𝜀𝜀 ≈ 𝜀𝜀 cos 𝜀𝜀 ≈ 1si 𝜀𝜀 → 0 alors et

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/11/


∆s = v∆t = ρ∆θ d’où

an = 𝑣𝑣
2

𝜌𝜌 at = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�ρan

at

a = at+ an = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

ut + 𝑣𝑣
2

𝜌𝜌
un

∆sP
P’

Expression du vecteur accélération dans la 
base de Frenet :
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1.3.e. Repère de Frenet

trajectoire

ut et un sont les vecteurs unitaires de la base de Frenet

a

v⃗
v’

Nous avons donc et

ut

un

 Accélérations tangentielle et normale pour un mouvement curviligne

ρ est le rayon de courbure

rayon de courbure ρ
ρ

ρ

ρ

ρ

∆𝜃𝜃
∆𝑡𝑡

=
𝑣𝑣
𝜌𝜌

∆𝜃𝜃

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/12/


a = at+ an = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

ut + 𝑣𝑣
2

𝜌𝜌
unExpression du vecteur accélération dans la base de Frenet :
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1.3.e. Repère de Frenet
 Accélérations tangentielle et normale pour un mouvement curviligne

Cas particuliers

1 – Mouvement rectiligne uniformément accéléré

2 – Mouvement cirulaire uniforme (la vitesse est constante)

𝑣⃗𝑣
𝜌𝜌 → ∞ ⟹

a = at= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

ut

𝑣𝑣2

𝜌𝜌 → 0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 0

a = an = 𝑣𝑣
2

𝜌𝜌
un

𝑢𝑢𝑡𝑡

𝑢𝑢𝑛𝑛

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/13/


La vitesse angulaire ω est constante pour un mouvement circulaire uniforme 

O

P
R

θ
s

Nous savons que

v = ds/dt or ds = Rdθ

sin dθ ≈ dθ = ds/Rdsdθ
R

La vitesse angulaire (scalaire) 𝜔𝜔 est une variation 
d’angle d𝜃𝜃 sur un intervalle de temps dt, soit :

(en rad.s-1 ou s-1)

et la vitesse de déplacement (scalaire) :   v = Rω

v⃗

1.3.f. Mouvement circulaire uniforme

𝜔𝜔 =
𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑
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 Vitesse angulaire scalaire

v = R 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑅𝑅𝑅𝑅d’où

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/14/


x y

z

R

r⃗γ P

C
v⃗

ω
La vitesse pour un mouvement circulaire uniforme est v = R ω

θ = ωt
pour un tour complet : t = T (période) et θ = 2π

d’où ω = 2π/T = 2πν

γ
v⃗ω

r⃗

1.3.f. Mouvement circulaire uniforme
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Relation entre angle et vitesse angulaire :

R est le rayon du cercle pour le mouvement de rotation de P autour de l’axe Oz 

O
On introduit le vecteur  ω, le vecteur vitesse angulaire

ω est un vecteur perpendiculaire au plan de rotation 
et toujours dirigé vers le haut pour une rotation dans 
le sens trigonométrique (contraire au sens de rotation 
des aiguilles d’une montre).

ω

 Vitesse angulaire vectorielle – expression générale

Or R = r sinγ soit v = ω r sinγ ⇒ norme du produit vectoriel de 𝑟𝑟 et 𝜔𝜔

v⃗ = ω × 𝑟𝑟

La vitesse 𝑣⃗𝑣 pour un mouvement de rotation uniforme s’écrit alors :

fréquence [s-1 ou hertz (Hz)]

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/15/


Accélération tangentielle instantanée :

at = dv/dt = R dω/dt = Rα =R 𝜃̈𝜃

Accélération normale instantanée :

an = v²/R = Rω² =R𝜃̇𝜃2
Remarque : mouvement circulaire uniforme  v = cte

d’où at = 0 mais an non nulle (=v²/R)

P

R

𝒗𝒗

v = Rω avec R cte

1.3.g. Mouvement circulaire – Résumé
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Mouvement circulaire avec 𝜔𝜔(𝑡𝑡) la vitesse angulaire (𝜔𝜔 n’est pas forcément constante)

𝑎⃗𝑎 = 𝑎⃗𝑎𝑡𝑡 + 𝑎⃗𝑎𝑛𝑛

𝑎⃗𝑎 𝑎⃗𝑎𝑡𝑡

𝑎⃗𝑎𝑛𝑛

⨀
𝜔𝜔

Accélération angulaire instantanée :

α = dω/dt = ⁄𝑑𝑑2𝜃𝜃 𝑑𝑑𝑡𝑡2 = 𝜃̈𝜃

accélération 
centripète 

v = Rω avec R cte

v⃗ = ω × 𝑟𝑟 𝑟𝑟 = 𝑅𝑅𝑒𝑒𝑟𝑟avec

𝑒𝑒𝑟𝑟

https://cours.qr.s-g-epfl.com/c/phys-101(e)-f24/3/16/
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